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ABSTRACT

Quantitative absorption measurements of the 5.9, 7.54 and
the 11,3y bands of pure HNO3 vapor were carried out at 40°C, Use
was made of absorption ceils of various lengths in order to obtain
curves of growth, The statistical spectral band model was applied

and band model parameters and integrated intensities were derived.
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1, INTRODUCTYION

Nitric acid has often been suspected of playing a role in
air pollution proceueu,1 but more recently it has been found to
be present in the atmosphere above 20 kilometers altitude.2 Its
presence was discovered by means of infrared absorption, and this
appears to be the method which will be involved in future studies
of its atmospheric distribution, The amounts of nitric acid im-
volved in the originally reported experiments have been determined
by laboratory measurements which duplicated the reported ablorptiona.3

The present results indicate that these estimates of the amount

present in the atmosphere might be too large.

This study was carried out to enable future atmospheric data
to be interpreted without the need to return to the laboratory with
each new piece of data, This can be accomplished by the use of the
absorption parameters based upon the statistical model of the differ-
ent absorption bands, In fact, this molecule is very well suited to

the model by its very large number of closely spaced lines.

The nitric acid molecule is a nearly planar molecule., Its
normal modes of vibration have previously been determined, and
assigned to the different bands.a There are four strong bands
located at 5.9y, 7.5p, 11,3y and 22u, but only the first three ave
reported in this study. Only self-broadening is considered. It
was originally planned to examine nitrogen broadening also, but
it was found that with the cell lengths available, the change in

the absorption produced by pressurizing with nitrogen was very

UV et




small, in comparison to the unpressurized adsorption. This would have
prevented an accurate determination of the relative broadening effect

of nitrogen.

The nitric acid molecule, because of its size, might ba expected
to be much more effective in line droadening than nitrogen. This is
still thought to be so. The reason the effects of nitrogen could not
be seen clearly was due to the very close spacing of the lines in the
bands. At soon as there is any significant pressure, the width of the

lines is large enough to make them almost completely overlapping.



2, STATLS sp

The present measuresents were made with pure nno, vepor only,
According to the spectrsl band model for & pure gas, the mesn spectral
trensmittence "i‘(v) of @ stetistical array of Lorentz lines {s deter-

mined by two basic parsseters ofv) (u’l) end B(v) (ltl.l)t

a(v) = x(v)/L = s°(v)/2my°(v) . (le)

B(v) = 2ny°(v)p/d(v) = B°(V)p . (1b)

Bere x(v) is the dimensionless Ladenburg-Reiche psrameter, s°(v)

2

(» cu’l) is the mean line intensity st unit pressure, Y(v)

1 ata l) is the wean halfwidth of the lines st unit pressure,

3
d(v) (a’l) is the meen spacing between the lines, p(atm) is the

pressure end L(cm) is the path length,
The meen tranmmittence is given by
T(v) = expl- W(w/a(W)] (2)

vhere Tl(u) is the velue of the cquivalent width, averaged oser the

line intensity distribution function P(S(V)):
W(v) = [ W(S(v) ,B(v))IP(S(v))dS (3
[+]

Assuming equally intense lines, i.e., P(S(v)) = 6(8(v)-s°(v))\|hou
so(v) reoresents the aversge intensity, -‘i'(v) can be expressed in
terms of & single Lorentz line:

T(v) = expl-p(v) £(a(W)L)] (%)



vhere f(x) is the Ladenburg-Reiche function:
£(x) = x exp(-x)[1 (x) +1,(0)] (5)

where Io and I. are modified Bessel functions.

1
A more realistic and convenient intunsity distribution function
is given by the exponential distribution: P(8(y) =exp(- S(v)lso(v)). A

aimple expreasion is then derived for ."i'(v):
o
71‘(\;) = exp {- —‘-)-u-)&a > x t‘} . (6)
(1+2a(v)1)

Several other intensity distribution functions have been recently dis-
cussed in the liteuture,s such as the exponential tailed S'l line
intensity diatribution P(S(v)) & S'l(v)exp[-S(v)/SO(v)] for which the

statiatical model gives

Tw = exp - MplHRL -1} .

The plot of -ﬁ(v)/l(v) against x(V) defines a spectral "curve
of growth" 6 having "linear" and "square root" regions, These regions
are given by the limiting form of W(v)/B(v) for x<l and xP1, respec-
tively. 1f f(x) is tranaformed according to (n/4)f(4x/m) the three
line intenaity distribution functiona mentioned above yield the same
asymptotes for the correaponding curves of growth: x and (x/2)k for
x<l and x»1, reapectively, However, they differ in curvature in the
central region. The curvature of W(v)/B(v) from Eq.(7) is smaller

than that from Eq.(6) which in turn ia smaller than that from Eq.(5).

For the application of the band model to experimental measure-

ments it is fundamental that the quantity -(ln-'i'(v))/p, for a given



path length and temperature, must be independent of pressure when the
statistical model of Lorentz lines is valid. (For low enough pressures,
-(2 n T(v) /p will increase with decreasing p, indicating Doppler broad-
ening,) Thus measurements over a large range of path length and pres-

sures are carried out, and for each path length L, the average value

3

yj(\;) = [- (,en-'i‘(v,Lj))/p]av is derived. By plotting yj(\,) against Lj

the '"curve of growth" can be obtained.

As shown in Fig. 3 of Ref, 6, the differences between the dif-
ferent curves of growth with different line intensity distributions
in the central region range from 10% to 20%. The experimental error
in yj(v) is generally about 15%. Therefore, the effect of the differ-
ent line intensity distribution on the curves of growth can generally
be observed, even though the results for the band model parameters
a(v), Bo(v) will not be extremely changed. In particular, So(\;) /d(v)
will be practically unaffected since it is independent of the line

intensity distribution. 6

The curve fitting may be done (for each frequency) graphically,
by shifting vertically and horizontally the experimental plot of
yj(v) against Lj over a theoretical plot of -"1(\)) /B(v) against x(v),
both on a log-log scale, until coincidence of the two curves occurs.

It is easily shown that the point of intersection of the asymptotes

of -"1(\;)/3(\)) has an abcissa Lo(cm) which satisfies the relation

a(v) = /(L) . ()
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The ordinate of this intersection is yo(atm‘l) which satisfies

BOv) = 2y, (9

and thus the band model parameters, &(y) and Bo(v), are determined,
It should be noted that this graphical method is similar to the
method forderiving s° and yo of a single line described by Benedict

et 81.7

In using the graphical method it is important to have measure-
ments over a range of path length such that the asymptotic regions
to the "curves of growth" are obtained, otherwise the resulting error
may be quite large due to the log-log scale on which the fitting is
made, Additional points in the central region will determine the

nature of the line intensity distribution.

Computerized methods can also be used for optimal fitting of
the experimental points to the "curves of growth", A simple least
square fitting is not possible because the functions involved are
not linear in the parameters &(V), Bo(v). In the case of exponential
intensity distribution, (Eq.(6)), the fitting may be done by minimizing

the expression8
Z1+ b 1, - et 12 fw)? (10)

where a(y) = az(v)az(v) and b(y) = 2a(v). Here the fitting is made
for relative changes in yJ rather than for yJ itself, in order to
allow the same weight for every change of yj. The absolute change in
yJ will give a greater weight to a greater yJ (vhich can be several

orders of magnitude greater than a smaller one),




This type of fitting is not possible for the exponential
tailed S ! intensity distribution. In this case the fitting can
be done by an iterative procedure described in a previous paper.

It is based on the minimalization of the expression

oF o
zj[ij(v)/yj(v) " 3alv) (@(v),8 (V) ,Lj)Aa(v)/yj(v)

2
F ) )
- o RCC ORI TN P

where F(a(v),ao(v),Lj) is the theoretical expression for yj(v),

the consecutive iterations are made by

OPERS IO (12)

BO(V) 4y = BO(W), + 88°(W) (12b)

and the convergence condition is taken as -

[dav) fatv)| + [a8°(W/B (W] <& . (13)

The iteration method can be used for other functions, arising from
different intensity distributions. The convergence is very fast:
for most practical cases not more than 5 iterations are needed for

¢ = 0.0002,

The results for a(V), Bo(v) may be used for determination
of the mean transmittance of a pure gas (by inserting the band model
parameters into the mean transmittance equation) and also for a gas
mixture, In the latter case, the transmittance equation takes on

somewhat different form.



The line halfwidth Yo for a binary gas mixture, with partial
pressures p_ (absorber) and Pe (foreign) depends on pressure accord-

ing to the relation:

(14)

where y; is the line halfwidth at unit pressure (cm"1 atm-l) charac-
teristic of the specific gas mixture, and Pe is the equivalént pressure

defined by
Pe = Pgt Bp, =p, + (B-1)p, (15)

where B is the broadening coefficient, and P, is the total pressure,
An equivalent path length Le (cm) is now defined by
= (p,/p,)L : (16)

By using P> Le Ba(v) , Bo(v)/B instead of p, L, a(v), 5°(V):
the transmittance eqﬁation can be used for the specific gas mixfure.

For example, Eq.(6) will take the form

B (v)d(v)p L
];5} (17)

-T(v) = exp{
. (1 -+ Zd(v)B L

The band model parameters can also be used for the determin-
ation of integrated intensities, The integrated intensity of an

absorption band is given by

s’ = k(v)d , (18)
b {;nd v .

where k(v)is the spectral absorption coefficient. Two methods can

be used to derive Sg. One is to integrate the product a(v)ao(v)



over the band. This is justified by the fact that d(\,)ao(v) =

So(v) /d(v) gives the absorption coefficient k(v) and therefore

S NGOV (19)
an

The other method is to integrate -(Zn T(v))/pL over the band for

a cell for which the absorption is in the linear region, where

T(v) ~ exp[-(s°(v)/d(v))pL] , (20)
and thus
s¢=.L1 T
bR p, g (£n T(y)) dv . (21)

The accuracy of the first method is in general wmuch better than that
of the second. This is because random errors are corrected during

the curve fitting process,
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3. EXPERIMENTAL

Anhydrous nitric acid was prepared by low pressure distillation
from a sulfuric acid mixture in the apparatus shown in Fig. 1. Re-
agent grade concentrated nitric acid, (70% HN03) manu factured by
DuPont, was used as the source for the-HNO3 vapor. Reagent grade
concentrated sulfuric acid, manufactured by DuPont, was used as dehy-
drating agent. In Fig. 1 A is a 100 ml. Pyrex glass distillation
flask, topped with a simple distillation head and thermometer B, The
receiver C is & 200 ml glass trap immersed in liquid nitrogen, Pres-
sure was measured with a McLeod gauge, and the vacuum pump F was
protected from acidic gases by a trap E, which contained about 200
grams of soda-lime. Ball and socket joints, size 18/9, were used
between elements of the apparatus to facilitate disassembly and
cleaning. Halocarbon grease (type #25-5S, Halocarbon Products
Corporation) was used to lubricate and seal the ball joints and
vacuum stopcocks, This grease is not affected by nitric acid vapor,

nitrogen oxides, or other oxidizing gases,

Distillation was carried out at a pressure of about 30 microns
from a mixture of nitric and sulfuric acids prepared in the ratio of
one volume of nitric to 1.4 volumes of sulfuric acid. This ratio
gives a stoichiometric ratio of one molecule of water (from the nitric
acid) to one molecule of sulfuric acid forming the mono-hydrated acid.
Usually a slight excess (5%) of sulfuric acid was added to the mixture,
which typically was made up of 25 ml nitric acid and 35 ml sulfuric

acid.
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When the sample was not in use, it was stored in the evacuated
receiver at liquid nitrogen temperature, When stored in this manner,
the acid remained colorless for several weeks; when stored at 0°c.

for four days, it began to turn slightly yellow.

To be sure that a single distillation was effective in produc-
ing pure anhydrous nitric acid, a batch of singly distilled acid was
redistilled from sulfuric acid. Spectra of the two products were
identical. This doubly distilled acid was used for most of the ex-

periments reported here,

The apparatus used for handling the nitric acid vapor is shown
in detail in Fig. 2. Since it is a glass system and nitric acid
vapor is photochemically decomposed, the work was performed with
subdued incandescent illumination. The cold sample receiver A from
the distillation apparatus (wrapped in aluminum foil to exclude
light) was attached to the apparatus at a point near the infrared
gas cell B, Vacuum was obtained from the pump J, protected by traps
of liquid nitrogen H, and soda-lime I. Ultimate pressure in the
system was measured with a McLeod gauge. When nitric acid was in
the system the McLeod gauge was blocked off to protect the mercury.
Pressures of nitric acid were read with either of two manometers;
one, G, a standard mercury-filled manometer with a 1/2 inch layer
of Kel-F (Minnesota Mining & Manufacturing Co., Grade KF-3) halo-
carbon oil on the surface to protect the mercury, the other, F,

a differential manometer filled with the same oil. Nitrogen gas
could be admitted (through a phosphorus pentoxide drying tube, C)

for pressure broadening experiments or for sweeping the system out,
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Infrared spectra were made with a Beckman Model IR-7 spectro-
photometer. This is a double-beam NaCl- foreprism grating instrument
with a range from 600 to 4000 cm-l, and is purged with dried air,
Four gas cells were used, two commercial and two built in the
laboratory. The two commercial cells were 10 and 5 cm Pyrex glass
cells obtained from Wilks Scientific Corp. These were equipped
with Teflon stopcocks and silicone o-rings. The silicone o-rings
were readily attacked by nitric acid as evidenced by the gradual
appearance in the HNO3 spectrum of several absorption features, the
strongest being at 1095 cm-l. These bands were identified as
characteristic of aikoxy-silanes, derived from the silicone polymer.
These o-rings were replaced with Viton which showed no deterioration
after considerable use. The o-rings were greased lightly with halo-
carbon grease, The windows were AgCl, 1/4" thick by 2" diameter,

Assembled path lengths were 99.40 and 49,30 mm,

The laboratory-built gas cells are shown in detail in Fig. 3.

These cells had path lengths of 10.20 and 20.28 mm, were built to
accommodate the 1/4" thick by 2" diameter AgCl windows, and were
inert to the nitric acid vapor. Unfortunately, the very narrow
inside diameter of the glass inlet tubing (1/16') permitted only
slow diffusion when pressure broadening experiments were carried
out, As with the long path cells the only materials in contact
with the acid vapor were glass, Teflon, halocarbon grease, Viton,

and AgCl,

It was observed during the course of handling the silver

chloride windows, that when a window had a strongly reduced surface



~0.5 cm .
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resulting in a silver mirror, this mirror was subject to reaction
with the anhydrous HNO,. This resulted in deposits of nitrate
salts and removal of the mirror., It was found that such mirrors
could be avoided in advance of use as a cell window by soaking

for several minutes in concentrated nitric acid,

Temperature of the gas samples while spectra were being

taken was 40°C #+ 2°C. Resolution for the quantitative spectra

was about 10 cm !

1

, while that for the high resolution scans was

S
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4, MEASUREMENTS AND RESULTS

In order to examine the purity of the HNO3 vapor sample and
to select the appropriate spectral model of the bands, preliminary
spectra with ~0.5 cm-1 resolution were first recorded, The observed
spectra, in which rotational lines could not be resolved, show the

"statistical' nature of the HNO, spectrum. Such a spectrum is shown

3

in Fig. 4. The identification of the different HNO3 bands is accord-

ing to McGraw et al.4 The only impurity that could be identified in

3 band of NO2 near 1618 cm-l. The integrated
2

intensity of this band is quite largelo - 2059 (cm

the spectra is the Vv
atm-l) at 25°C -
which is about twice the intensity of the strongest HNO3 band (see
below). In view of the small absorption present due to this band,
it was estimated that the NO2 impurity introduces only a small error

of about 1% in the pressure measurements for HN03.

For measurements of the mean transmittance.i(v) the geo-
metrical slit width of the spectrometer was increased to 0.50 mm,
corresponding to a spectral slit width of about 10 cm-l. Absorption
spectra were taken with the four cells. For a given cell spectra
were recorded for a series of different pressures, from 8 to 12
pressures for each cell. The pressure ranged from 1 mm Hg in the
longest cell (99,4 mm) to 65 mm Hg in the shortest cell (10.2 mm).
The measurements procedure was as follows, The envelope, with
the cell in vacuum (~10 micron) was recorded first. Then different
pressures were introduced, by admitting fresh HNO3 vapor to the

cell for each run, The pressures were chosen so that the peak
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absorption varied between 20% end 80%, in order to minimiza the
error11 in dariving -In "'i'(v). Only the three regions of interest
were recorded during the runs with the different pressuras, except
in the last run with the highest pressure in which the complete
region from 600 to 4000 ca'l vas racorded, The final step was to
evacuate the cell and to agein record the base-lina. In ganaral,
the second base-line was made about 4 hours after the first one end
it was found to agree with the first one within $0.5%. Typical
spectra obtained according to this procedure with tha 49.3 mm cell

are reproduced in Fig. 5.

The mean transmittance was determined from tha racorded
spectra for many frequancies - about 30 frequancias for each bend -
at 2.5 cm.l intervals. The salected net of frequencias follows
closely the shapa of the transmittance curve. For assch selactad
frequency -(ln -i'(v))/p was than calculsted. It was found that
for a given call langth and fraquency, the quantity -(ln "i'(\.))/p
was indepandant of prassure to within $4% with tha excaption of
few measurements at low pressures (below ) mm Hg) for which
deviations up to 20% from the average wera observed. Tha constancy
of -fn 2T(v))/p as & function of p for pressuras abova 3 mm Hg
proves the validity of the statistical modal with Lorentz line
shape. However, it is not obvious if the deviations at low
pressures are due to Doppler broadening or due to axperimental
error in the determination of the low pressuras of mo, vapor,

Excluding the few low prassure measurements, the avarage values

et
et
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yj(v)- [-([n_"r(v))/p]av were then obtained (one for each cell), A
typical example of the deviation of -(tn'?(v))/p from the average

as a function of p is shown in Fig, 6 for v = 1700 cm'1 in the 49.3
mm cell, In this example, the point at 2.5 mm Hg was excluded from

the average,

The resulting average values of yj(v) were then fitted to
the statistical band model. Results for the band model parameters
o(v) = x(v)/L,8%(v)=2ny°(v) /d(v) and their product S°(v)/d(v) are
given in TablesI.-III. The values of S°(y)/d(v)are also plotted
against y for the three bands under consideration in Figs. 7-9.
The parameters are defined for unit pressure (1 atm) at the temp-
crature of the experiment (40°C). These parameters were derived
for an exponential line intensity distribution, i.e., according to
Eq.(6), using the least square procedure outlined in Eq.(10). The
results show that x(y)/L < 0.05 so that the experimental points
fall in the linear and in the central region of the curves of growth,
Even the 99.4 mm cell was not long enough to achieve the square root
region. Therefore, it is expected that the erroms in «(v) and ao(v)
are much larger than the error in So(v)/d(v). The experimental
points were also fitted to&exponential line intensity distribution,
using the iteration procedure, and to an exponential tailed S-1
line intensity distribution using the iteration procedure., Also,
the experimental points were arbitrarily changed by 15% and then
fitted in the same way as in Tables I.-III. No improvement in
the fitting was obtained by using the exponential tailed S.1 line

intensity distribution., The fitting to this model did not have
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a significant influence on So(v)/d(v), but values for o(v) and Bo(v)
differed by up to 50%. An error estimate could be obtained from

the different fitting procedures used, typical results for which

are shown in Table IV, for v = 1700 cmfl. It is estimated that

the avera, . erros in O’(v),ﬂo(\)) are ~50% while the error in

s°(v) /d(v)is ~5%.

Since Tables I.-III. can be regarded as representing the
values of x(v) for a l-cm path length, it is clear that for a 1l-cm

path length all mean transmittance values follow Lambert-Beer's law:

T(v) = expl-k(w)pL] , (22)

where

k(v) = a(y)B°(v) = (W) /d(v) . (23)

On the nther hand, for most frequencies, path lengths greater than
~10 cm no longer give results which lie in the linear region of
the curve of growth, The assumption of Lambert-Beer's law may then

lead to serious errors,

Integrated intensities for the three bands were derived as
shown in Table V, ' The two methods mentioned above were used to
derive the integrated intensities - one by f d(v)Bo(v)dv and the
other by .J.-,en T(v XvApL (e Eqs. (19), (21)). The second method
was applied to the shortest cell (10.28 mm), for which x(v)<0,05
which is well in the linear region of the curve of growth. However,
according to the discussion in the previous section, the values of
fa(v)ao(v)dv are regarded as the best values for the integrated
intensities, With the error limits quoted in Table V. both methods

gave consistent results,

ey
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Schematic diagram of the Teflon absorption cell.

Fig. 3a.
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Fig. 3b.

Schematic diagram of the cross section of the cell body.
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TABLE 1I.
v x/L

(cm 1) (cm 1)

85140 1.9730=03
85245 6,4460=03
855.0 9,2053=03
857.5 1.1R7253=0)2
862%.0 1e¢31549=02
862¢9 15718205
8650 1e7392=09
86745 1.9218=02
87240 1.,87%a=02
87245 1,92368=02
875,0 1,60h@=0?
B775 1.859@=02
RRN DO 1{e9224=02
8RB2¢5 1¢9R879=02
8850 2e0749=02
837,49 2.2643=02
B97%.0 2,214a=02
892.5 2.1453=02
895,0 1,7888=02
897.5 1{.152@=0?
900,0 8.,0408=03
902.5 B.517/3=03
905449 1.1578=0
9075 16768=02
91140 Se1)6A=03
912.5 12178=02
915.0 1.,11808=02
9175 801759'03
92,0 7.4008=03

2my°/4

(atm 1)

1e114R+03
4,6160402
2490402
4,25732+02
4,6819+02
Ge617240?
4.6862+02
1450034072
4,72143+02
4,3B42+02
5,3969+02
5.6767+02
65.0138402
5.6782+4¢02
He3512+02
409653+02
HeO04T7a402
543043402
6,9368+02
1.0630+403
1.305@403
1001“9#03
O 487340
“oﬂ’ﬁ@*O?
141992403
BephH20+0P
G4e3R3R+02
f,7560+02
3.8708+02

s°/d

1 -1

(ecm ~ atm

2:.107@8400
29758400
3,911€400
5.0378400
61549490
Te268W400
3.1502400
R.8178+00
9.2179400
9.,3898400
9.461%+00
1055%+01
1.1569+01
1.1288+01
1.110%+01
1.124840n%
1,117940)
1.,1570401
1.240R401
1,224,401
1.0499404
B.638W400
7T.5099400
he8350400
61369400
56618400
408996#00
3.888K68+00
20666a+00

)

35
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TABLE 1I.

v x/L
G )
12/5.0 h.'),34'a.03
1277.5 143594=02
1289,0 9,274a=03
1282.5 3,3953=03
t285.0 V0 ,RA5Ya=(3
1287 .5 1.34053=U9
12900 1.5319=02
12929 16560242092
1273.) 1.4723=02
1227.5 1e26833=0D
1309.0 1.10993=02
1302.5 1.72)3=07?
1305.0 1.N288=02
1307.5 4,5413=03
1319.0 1.31%59=)2
1312,5 D¢9U4D>3=072
1315, 2,33%e=07?
1317.5 2.214@°02
13217.0 1,5592=02
1322.5 te1TUE=0)
1325.0 1e5417=02
132745 1.8233=02
133970 1.5779=02
13325 1¢9209%=02
1335.0 ~.6813=02
133’.5 3.353"02
13472,.0 G, rTAamn?
1342.5 1.7009=02
1345.0 5,0480=03
1347,5 5,3564=03
1390.0 2.9708=03

2my°/d
atm 1)

J.3b%p4N7
2.7630+02
4,97234+02
H,6R50402
6,85274+02
S5.d4859402
S5.720@04+02
DeBAIN+ND
f«1389+02
e 4NPA402
1e1A4634+N3
1.585224+03
1./519+03
3.0242403
1.603%3413
9,0758402
9.80imeN2
1.032a403
103913¢03
17999403
(3833403
1.7°289+13
1.0673+03
3.718@+02
5.1727434n2
3..252+Nn2
341490402
.7169402
1.,84693+403
201319#03
2.9342403

s°/d
«cm-1 afm-l)

¢ .828@400
3,756P400
00611“+00
©£.61729400
£ 47554400
71.917%400
R,.759494+00
45529400
N9+
1270404
3749401
.q“3“+0]
19000401
«ITRE4NY
o‘s!iGAI
29794
R AFDE]
02369401
« 1689401
1059404
PR DX
9517401
0‘823+01
1.58K941
16662341
1.725 401
lo’ir‘*01
1.73934N1
10“%69401
1.1680401
B, 71A9,00

— s - e

NY AT N, .

NG

BN

Jm s AT NY




TABLE III.
v x/L
-1 -

(em ) (cm ©)
1675.0 2.0579=0)
1677.5 145613=0)>
16894 1.5733=02
1632.5 14943@=02
1685.0 202230292
16487,95 2.4323=02
169,90 P2e779a=02
1692,5 2.9063=02
1695, J.159a=02
1697,5 3,501a=p2
1709%,u 3.2648=02
1702,5 2,3533=0)
17050 1.0509=0>
179745 1.56173=0)
17190 1.5R800=09
171245 1¢5483=0D
171540 1.9623=0)2
1717.5 270132092
172940 3.2709=02
1722.% 3,4212=)2
1725.9 3J.2053=02
1727.,> 3, 4R23%=(2
1739,0 3s2050=y?
1732.,5 2,962@=92
1735.0 4.1709=02
1737.5 4,4913=07

Znyold

(atm™ 1)

2¢4329400
4462463409
Se%3%@4N2
Se749049D
603“6@*02
Te0170402
741350402
7.¢550a402
7.301a240?
6,d0724072
,02?3°+0?
9.95504+07
242120403
13400403
163290403
154604073
13794493
F.hANDEND
$.07530407
,0()159*‘02
7.7359402
6 03613#02
5.5153+02
4,4584+02
2.75994+02
1,4023402

s°/d
(em 1 atm-l)
5.003“400
£+650d840n
g0803@+00
1.124940
1ed123401
10’13“#01
1.983MH,401
21949401
2.3319401
24333040,
7243580404
2.342040
24322¥404
?0167940[
241000404
25478401
?.6°Q”+01
9.55”“+01
2.5%"@+01
?.60%08401
2.4703,401
2:7159,01
1.7689%,:01
1,3200401
9.4208400
6,296,400
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TABLE V, Integrated Intensities for !'INO3 at 40°C

Region S:(P) Sg(b)

gcm-lz gcm'z.g_tm:_lﬂ‘; gcm‘z atm” 1}
850.0-920.0 582 + 10% 609 + 5%
1275.0-1350.0 1126 4+ 10% 1186 + 5%
1675.0-1737.! 1221 + 10% 1254 + 5%

v

o(a) > & 0
S = J\,1 (s°(v) /d(¥) )dv

\"

2

Sz(b) =:ﬁl‘ J (£n T(v))dv from short cell.
v
1
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